
STUDY AND IMPLEMENTATION OF A MONOTONE FINITE ELEMENT

SCHEME FOR CONVECTION-DIFFUSION EQUATIONS

DANA TOBIN, BRADLEY THOMPSON, AND LUDMIL ZIKATANOV

Abstract. These notes are for studying and exploring a monotone finite element discretization for
convection diffusion equations with tensor coefficients. This scheme has applications in modeling
semiconductor devices (the well known drift diffusion model) and also in modeling the transport of
chemical species in an electrically charged fluid (Nernst-Planck equations).

1. Introduction

This project is on studying the Edge Average Finite Element (EAFE) [1, 2] scheme and incor-
porating it as part of the iFEM package [3]. The focus of this research is the numerical solution of
convection diffusion equations of the following form

(1)

{
Lu ≡ −∇ · (D(x)∇u+ β(x)u) = f(x), x ∈ Ω,
u = 0, x ∈ ∂Ω.

We assume the following: D is a matrix valued piece-wise constant function and D(x) is symmetric
and positive definite for all x ∈ Ω; β is a given velocity field (also piece-wise constant); and a given
right hand side f(x).

We study finite element discretizations for such equations. The main part of the research is on
the implementation of the aforementioned Edge Average Finite Element (EAFE) scheme proposed
in [1, 2]. This scheme is a generalization of finite difference 1D (one dimensional) discretization of
current continuity equations in semiconductor device modeling [4].

As part of the project, we also briefly studied standard Finite Difference and Finite Element
methods. Some of these studies are summarized in the Appendix.

1.1. EAFE scheme in 1D. We now look for an approximation of the one-dimensional case for a
boundary value problem of the form

−(u′ + βu)′ = f, u(0) = 0, u(1) = 0.

We can also write this equation in the form

−[J(u)]′ = f, where the flux J(u) is: J(u) = u′ + βu.

We split the interval [0, 1] into n subintervals and aim to approximate the flux as a constant on
every interval. That is to say that on every interval we have

u′ + βu = c, where c is an unknown constant.

Let us now change the variables to where u = e−βxw. We have

u′ = −βe−βxw + e−βxw′.

Thus

u′ + βu = e−βxw′ = c.

These notes are based on the 2013 summer research as a part of the Computational Mathematics for Undergraduate
Students in the Department of Mathematics, Penn State, University Park, PA, 16802, USA; see http://sites.psu.

edu/cmus2013/ for details.

1

http://sites.psu.edu/cmus2013/
http://sites.psu.edu/cmus2013/


2 DANA TOBIN, BRADLEY THOMPSON, AND LUDMIL ZIKATANOV

Substituting w from above back into this equation we get

e−βx(ueβx)′ = c, or (ueβx)′ = ceβx.

Integrating both sides from xi to xi+1 yields

eβxi+1ui+1 − eβxiui = c(
1

β
eβxi+1 − 1

β
eβxi).

After some simplification, we get the unknown constant c to be

c =
β

eβxi+1 − eβxi
(eβxi+1ui+1 − eβxiui).

Since u is piecewise linear and continuous, we can take the inner product with a test function v,
where v is the hat function φi(x) to obtain∫ xi+1

xi

Jv′ dx = c

∫ xi+1

xi

v′ dx.

The slope of φ(xi) is negative between xi and xi+1, so this simplifies to
−1

h
hc = −c. The i-th row

of the stiffness matrix is then simply −c (which we will denote as (−J)). This equates to

βeβxi

eβxi+1 − eβxi
ui −

βeβxi+1

eβxi+1 − eβxi
ui+1.

Simplifying this further and multiplying both the top and bottom by h gives

βh

h(eβh − 1)
ui −

βh

h(1− e−βh)
ui+1.

Substituting s for βh yields

1

h
(

s

es − 1
ui −

s

1− e−s
ui+1).

The terms in front of ui and ui+1 are in fact values of the Bernouilli function, B(s) =
s

es − 1
, and

hence we get
1

h
(B(s)ui −B(−s)ui+1). Similar calculations for the interval [xi−1, xi] then give

−1

h
(B(s)ui−1 −B(s)ui).

Summing these up we get

1

h
(−B(s)ui−1 + (B(s) +B(−s))ui −B(−s)ui+1 = fi.

2. EAFE in 2 Dimensions

2.1. Mesh Structure. In this section we will introduce the basic and auxiliary structures of
representing a mesh. The code will follow the example of the unit square in two dimensions. The
presentation here closely follows the Introduction notes given in [3] and on the iFEM website:
http://www.math.uci.edu/~chenlong/iFEM/doc/html/meshdoc.html.

http://www.math.uci.edu/~chenlong/iFEM/doc/html/meshdoc.html


MONOTONE FE SCHEME FOR CONV.-DIFF. EQUATIONS 3

2.2. Basic Mesh Structure. In MatLab, node(1:N,1:d) and elem(1:NT,1:d+1) represent a
d-dimensional triangulation embedded in IRd. For a triangle t, elem(t,1:3)indicates the three
vertices. By convention, vertices are ordered such that the signed volume is positive, that is,
in two dimensions, triangle vertices are ordered counterclockwise. The function fixorientation

will permute the vertices of the triangles if necessary. The label function permutes vertices such
that elem(t,2:3) is the longest edge of t, while the label3 function permutes vertices such that
elem(t,1:2) is the longest edge of t. The following code creates the mesh for a unit square.

node=[1,0; 1,1; 0,1; -1,1; -1,0; -1,-1; 0,-1; 1,-1; 0,0];

elem=[1,2,9; 3,9,2; 9,3,5; 4,5,3; 8,7,1; 7,1,9; 9,7,6; 5,9,6];

elem=fixorientation(node,elem);

figure(1); showmesh(node,elem)

axis on

findnode(node)

findelem(node,elem)

To obtain a fine mesh for this domain we apply uniform refinement three times in the loop

for i=1:3; [node,elem]=uniformrefine(node,elem); end

This creates a refined mesh structure which will help to increase the accuracy of approximating the
solution. In FIgure 1 we show the basic mesh and the refined mesh.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

234

5

6 7 8

9

1

2

3

4

5

6

7

8

Figure 1. Basic Mesh Structure of Unit Square (left); Refined Mesh Structure of
Unit Square (right)

2.3. Auxiliary Mesh Structure. The iFEM function auxstructure.m gives the auxiliary mesh
structure for the domain from the array elem as the input. This function constructs the map
between elements, edges, and also outputs the boundary information. The convention used in
this function follows a2b such that it is based on the map from a to b. On the other hand,
edge(1:NE,1:2) stores the indices of the starting and ending points of the edges. The elem matrix
is the correspondence between triangles and vertices. The link from vertices to triangles to find all
triangles containing vertex v is stored by the sparse matrix

t2v=sparse([1:NT,1:NT,1:NT],elem,1,NT,N)

The matrix means that the ith node is the vertex of triangle t if t2v(t,i)=1. Also, t2v(:,i)
gives all triangles containing this ith node. In addition, nodeStar=find(t2v(:,i)) finds the star
of the ith node, which is all the triangles that are connected to this same node. The cardinality of
the node star is given by

valence=accumarray(elem(:),ones(3*NT,1),[N,1]).



4 DANA TOBIN, BRADLEY THOMPSON, AND LUDMIL ZIKATANOV

Commands sparse and accumarray are used to lessen the computational time of using for loops
for meshes with large number of elements. The array neighbor(1:NT,1:3) records neighboring
triangles to each triangle by using

accumarray([[t1(ix),k1(ix)];[t2,k2]],[t2(ix);t1],[NT 3])

We next describe the weak formulation derive the EAFE scheme.

2.4. Weak formulation in 2D. The weak (variational) formulation of the problem (1) is: Find
u ∈ H1

0 (Ω) such that

(2)

∫
Ω

(D(x)∇u+ β(x)u) · ∇vdx =

∫
Ω
f(x)vdx.

Usually, u will model concentration. An important property we want to preserve is that under
certain conditions, the solution u is non-negative. More precisely,

(3) If (Lu)(x) ≥ 0 for all x ∈ Ω then u(x) ≥ 0 for all x ∈ Ω.

The above condition will be referred to as the monotonicity property, and it holds regardless of
the size of |β(x)| (even in the convection dominated case where |β(x)| � 1. We will refer to a finite
element scheme that approximates the equation (1) and satisfies the above condition as a monotone
finite element scheme. If the stiffness matrix is an M -matrix, then the scheme is monotone and the
EAFE scheme satisfies this property under appropriate assumptions of the geometry of the mesh.
In two dimensions, this amounts to requiring that the triangulation is a Delaunay triangulation.

We will first consider here the case when D = I (the identity matrix). The more general case
with any D is given at the end of Section 2.5.

The finite element spaces that we consider are the piece-wise linear and continuous and are
defined on a triangulation with triangles in 2D and tetrahedrons in 3D. The entries of the stiffness
matrix play a special role for the Laplace equation in what follows (i.e. equation (1) with β = 0
and D = I). Let {ϕi}ni=1 be the set of “hat” functions.

We set

ωTE(D) =

∫
T

(D∇ϕi) · ∇ϕj , and

ωTE = ωTE(I) =

∫
T
∇ϕi · ∇ϕj =

1

d(d− 1)
|κTE | cot θTE .

Here, d is the spatial dimension. The entries in the stiffness matrix for the Laplace equation are
denoted by ωE and we have

(4) ωE =
∑
T⊃E

ωTE =
1

n(n− 1)

∑
T⊃E
|κTE | cot θTE ≥ 0

where
∑
T⊃E

means summation over all simplexes T containing E. We refer to Figure 2 for the

notation used.

2.5. Derivation of the EAFE scheme. The derivation below is independent of spatial dimension
and is therefore the same for 2D and 3D.

Given T ∈ Th, we introduce the following notation (see Figure 2):

• qj (1 ≤ j ≤ n+ 1): the vertices of T ;
• Eij or simply E: the edge connecting the two vertices qi and qj ;
• Fj : the (n− 1)-dimensional simplex opposite to the vertex qj ;

• θTij or θTE : the angle between the faces Fi and Fj ;

• κTE : Fi ∩ Fj , the (n− 2)-dimensional simplex opposite to the edge E;
• δEφ = φ(qi)− φ(qj), for any continuous function φ on E = Eij ;



MONOTONE FE SCHEME FOR CONV.-DIFF. EQUATIONS 5

• τE = δE x = qi − qj , a directional vector of E.

q

qq

F

F

e

j

i

j

i

E

g
E

Figure 2. Example of a figure: A tetrahedron

Given any edge E, we introduce a function ψE defined locally on E (up to an arbitrary constant)

by the relation
∂ψE
∂τE

=
1

|τE |
(β · τE). Here, ∂/∂τE denotes the tangential derivative along E. As a

basis for our derivation we use (5) below. For u with sufficiently many derivatives (such that the
expressions below make sense) we have that

(5) δE(eψEu) =
1

|τE |

∫
E
eψE (J(u) · τE)ds,

where J(u) = ∇u+ βu.
To derive equation (5), we take the dot product of the relation J(u) = ∇u + βu with the

directional vector τE and obtain

(∇u · τE) + (β · τE)u = (J(u) · τE).

Now using the definition of ψE in given above we get

(6) e−ψE
∂(eψEu)

∂τE
=

1

|τE |
(J(u) · τE).

The equality (5) follows from (6) after integration over edge E.

Let H(β) be the harmonic average of e−ψE over E, defined as:

(7) H(β) =

[
1

|τE |

∫
E
eψEds

]−1

.

First we approximate J(u) over each simplex T by a constant vector JT (u). Then from (5) we have
that

(8) JT (u) · τE ≈ H(β)δE(eψEu).

From all this we get that for any v ∈ Vh, if JT (u) is a constant on T we have

(9)

∫
T
JT (u) · ∇vdx =

∑
E

ωTE(JT (u) · τE)δEv ≈
∑
E⊂T

ωTEH(β)δE(eψEu)δEv.

The finite element discretization is: Find u ∈ Vh such that

(10)
∑
T∈Th

{∑
E⊂T

ωTEH(βT )δE(eψEu)δEv

}
=

∫
Ω
fv for all v ∈ Vh.



6 DANA TOBIN, BRADLEY THOMPSON, AND LUDMIL ZIKATANOV

Because we have assumed that β is a constant on every triangle T , the system of linear equations
for {ui} has the form

(11)
∑
T

∑
E∈T

ωTE [B(−βT · τE)ui −B(βT · τE)uj ] = Gi,

where Gi =
∑
T⊃xi

∫
T
fϕidx and τE = xi − xj . The inner summation is over all edges in an element

T and B(s) is the Bernoulli function

B(s) =

{ s

es − 1
, s 6= 0,

1, s = 0.

Note that if s → +∞, then B(s) approaches zero exponentially and B(−s) behaves like s when
s→∞.

In the case where D 6= I we have the following discrete problem (according to [2]):

(12)
∑
T∈Th

{∑
E⊂T

ωTE(D)H(βT )δE(eψEu)δEv

}
=

∫
Ω
fv for all v ∈ Vh.

In 2D, the geometric conditions which make the FE scheme monotone are that the triangulation
has to be Delaunay with respect to the metric given by D.

2.6. Matrix Formulation. Given a triangle with vertices x1, x2 and x3, and with edges (12), (13)
and (23) we denote

τ12 = x1 − x2, τ13 = x1 − x3, τ23 = x2 − x3.

For 1 ≤ i < j ≤ 3 and with the Bernoulli function B(·), we have

bij = −B(β · τij), bji = −B(−β · τij), 1 ≤ i < j ≤ 3.

Each off-diagonal element in the local stiffness matrix then is of the form

aTij = ωij(D)bij , i 6= j, i = 1 : 3, j = 1 : 3,

where

(13) ωij(D) = −
∫

Ω
∇φiD∇φj dΩ

and hence

(14)

 aT11 −ω12(D)B(β · τ12) −ω13(D)B(β · τ13)

−ω12(D)B(−β · τ12) aT22 −ω23(D)B(β · τ23)

−ω13(D)B(−β · τ13) −ω23(D)B(−β · τ23) aT33


Since the column sum in the local matrix must be zero, we have for the diagonal elements that

aT11 = −(aT21 + aT31), aT22 = −(aT12 + aT32), aT33 = −(aT13 + aT23),

and this gives

aT11 = ω12B(−β · τ12) + ω13B(−β · τ13)

aT22 = ω12B(β · τ12) + ω23B(−β · τ23)

aT33 = ω12B(β · τ13 + ω23B(β · τ23)



MONOTONE FE SCHEME FOR CONV.-DIFF. EQUATIONS 7

Figure 3. Solution to convection-Diffusion equation: Example 1

3. Numerical examples

Our computational domain is the unit square Ω = (0, 1)× (0, 1). We consider the equation

(15) −∇ · (D∇u+ βu) = 1,

and set β =

(
−y
x

)
.

Example 1: In our first example we have a simple choice for D where

D = εI = ε

(
1 0
0 1

)
, ε = 10−5.

The graph of the solution is shown in Figure 3. We may think of ε in the above and subsequent
equations as the mobility of the species whose concentration is u(x, y). If the species is a fluid,
then ε is an approximation to the viscosity. Altering the ε parameter changes the model properties
of how the concentration disperses if the fluid is more or less viscous (larger values of ε indicate
higher viscosity while smaller values indicate lower viscosity). To visualize this, one can consider
the differences in how molasses (a very viscous fluid) would disperse over an area versus a less
viscous fluid (i.e. water) given identical initial velocities and boundary conditions.

Example 2: Our second example changes the parameters of D so that we introduce some
anisotropy where

D =

(
1 0
0 10−4

)
The solution to this variation is shown in Figure 4 (left).

Example 3: In this example we take

D = 10−4

(
1 0
0 1

)
+

(
1 1
1 1

)
, 0 < x <

1

2
;

D = 10−2

(
1 −1
−1 1

)
+

(
1 1
1 1

)
,

1

2
< x < 1.

The solution to this example is shown in Figure 4 (right).
In all of these examples we see that the EAFE scheme correctly captures the behavior of the

solutions and that there are no spurious oscillations in the numerical solution. This result shows
that the scheme is monotone and applies for the examples we have chosen here.



8 DANA TOBIN, BRADLEY THOMPSON, AND LUDMIL ZIKATANOV

Figure 4. Solution plot: Example 2 (left) and Example 3 (right)

4. Our additions to iFEM

The main modifications in implementing the above scheme in the iFEM package are as follows:

• We have more general coefficients by modifying iFEM so that a tensor diffusion coefficient
is possible (i.e. D is a matrix). This modification works for both diffusion and convection
diffusion equations.
• We have also modified the assembling routines in iFEM to include the EAFE scheme. Our

implementation avoids the use of for loops in computing local stiffness matrices.

Appendix A. Standard methods

A.1. Finite difference methods in 1D. We begin by looking at a simple Finite Difference
Method and later introduce the Finite Element Method. Let us first look at an idealized practical
example that is typically modeled by using this method. Consider a string pinned at both ends and
acted upon by a force f(x) causing displacement u(x). Hooke’s Law gives us that the displacement
satisfies −(ku′)′ = f , where k is a constant material coefficient that depends upon the properties
of the string. To simplify notation for this example, we take a homogenous material (k = 1) and
set the ends of the string such that the string is on the interval (0, 1). The ordinary differential
equation and the boundary conditions describing this system then are

−u′′ = f, u(0) = u(1) = 0.

To approximate this equation and obtain a solution, we break the interval [0, 1] into n subintervals
of length h. This is to say that [0, 1] = ∪ni=1[xi−1, xi] has some value x1, x2, ....., xn such that each
uk is approximately u(xk). We assume that xk+1 = xk + h. Doing a Taylor Series Expansion we
get that

u(xk−1) = u(xk − h) = u(xk)− hu′(xk) +
h2

2!
u′′(xk)− (

h3

3!
)u′′′(xk) + (

h4

4!
)u(iv)(xk) + . . . ,

2u(xk) = 2u(xk),

u(xk+1) = u(xk) + hu′(xk) + (
h2

2!
)u′′(xk) + (

h3

3!
)u′′′(xk) + (

h4

4!
)u(iv)(xk) + . . . .

Now let us look at −u(xk−1) + 2u(xk) − u(xk+1). From the above expansion we can see that

u(xk), u
′(xk), and u′′′(xk) are cancelled out, leaving h2u′′(xk) and

1

12
h4u(iv)(xk). Thus we have

2uk − uk−1 − uk+1 = h2u′′(xk) +
1

12
h4uiv)(xk) + . . .



MONOTONE FE SCHEME FOR CONV.-DIFF. EQUATIONS 9

We are drop the higher order terms from this expression (any term that goes to zero faster than
h2 as h→ 0), so we are left with

−u′′(xk) ≈
−uk−1 + 2uk − uk+1

h2
= f(xk), for k = 1, . . . , n− 1.

Let us now consider some values of this discretization for integers k near the boundary:

k = 1 : f1 = 2u1 − u2, (u0 = 0)

k = 2 : f2 = −u1 + 2u2 − u3

. . .

k = n− 1 : fn−1 = un−2 + 2un−1, (un = 0)

The resulting [(n− 1)× (n− 1)] matrix for this linear system of equations is then

A =
1

h2



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


With this matrix we can now solve the equation Au = f for u and obtain values which approximate
the solution.

We have shown how to discretize u′′, and will now the discretization of u′. We again consider
the Taylor expansions shown above, but now look at three expressions that simplify to u′. Three
methods for approximating u′ are as follows:

u′ ≈ u(xk)− u(xk−1)

h
, (Backward Difference),

u′ ≈ u(xk+1)− u(xk)

h
, (Forward Difference),

u′ ≈ u(xk+1)− u(xk−1)

2h
, (Central Difference).

These techniques can be applied to a convection diffusion equation in 1D of the form

−εu′′ + u′ = f,

An instructive example is to test the above discretizations on this equation with f = 0 and boundary
conditions of u(0) = 0 and u(1) = 1.

A.2. Variational Formulation and Finite Element Method in 1D. Let us consider the
convection-diffusion equation as our example for the Finite Element Method in one dimension. We
have

−εu′′ + u′ = f, where u(0) = u(1) = 0.

Multiplying through by a test function v(x) and integrating yields

−ε
∫ 1

0
u′′v dx+

∫ 1

0
u′v dx =

∫ 1

0
fv dx.



10 DANA TOBIN, BRADLEY THOMPSON, AND LUDMIL ZIKATANOV

Integration by parts gives the variational form of the original equation as follows: Find u such that
u(0) = u(1) = 0 and satisfies the equation

ε

∫ 1

0
u′v′ dx−

∫ 1

0
uv′ dx =

∫ 1

0
fv dx.

To approximate this variational formulation we again divide the interval [0, 1] into n subintervals
and approximate u as a piecewise linear and continuous function. The solution is represented by a
series of broken lines connecting the values at each break point.

Any piecewise linear function can be written as v(x) =
∑

αiφi(x), where {φi(x)}n−1
i=1 are hat

functions and are the basis for the space of piecewise linear functions. We take these hat functions
to also be our test function. The discretization is then to find u such that∫ 1

0
(εu′ − u)φ′i dx =

∫ 1

0
fφi dx

Since u is also piecewise linear and continuous, it follows that

u =

n∑
j=1

ujφj(x)

for unknown coefficients uj . The discrete variational form then becomes∫ 1

0
[ε(

n−1∑
j=1

ujφj)
′ −

n−1∑
j=1

ujφj ]φ
′
i dx =

n∑
j=1

[

∫ 1

0
φ′i(x)(εφ′j(x)− φj(x)) dx]uj

We will call the term inside the bracket aij . Evaluating the integral yields 0 for every term except
for

ai,i−1 =
−ε
h
− 1

2
,

ai,i =
2ε

h
,

ai,i+1 =
−ε
h

+
1

2
.

This leaves us with a sparse matrix that contains
2ε

h
on the 0 diagonal,

−ε
h
− 1

2
on the −1 diagonal,

and
−ε
h

+
1

2
on the 1 diagonal. A = (aij) is the stiffness matrix in the equation Au = f and f is a

column vector of h for every entry if f(x) = 1.

A.3. Standard Finite Element Method in 2D. Often, the 1-D version does not model two or
three dimensional physical phenomena very well, so we turn our attention to 2D FEM. In what
follows, the Laplace operator, ∆ = div(∇) will be used often. The partial differential equation
(PDE) of interest is then

(16) −∆u+ β · 5u = f(x, y)

in a domain Ωε<2. In our case, Ω is the unit square oriented with the bottom left corner at
the origin. In order to find the variational form of the equation in the 2-D case, we must do a
multivariate integration by parts, similar to the 1-D case. Doing so gives us

(17)

∫
Ω
u
∂v

∂x
dΩ = −

∫
Ω
v
∂u

∂x
dΩ +

∫
∂Ω
uvnx dγ

where nx is the vector normal to the boundary.



MONOTONE FE SCHEME FOR CONV.-DIFF. EQUATIONS 11

Two related equations that can be derived almost directly from this one are

(18)

∫
Ω
Div(v)u dΩ = −

∫
Ω
v ·∆u dΩ +

∫
∂Ω

(v · n)u dγ,

(19)

∫
Ω

(−∆u)v dΩ =

∫
Ω
5u · 5v dΩ−

∫
∂Ω

(5u · n) · v dγ

We now turn back to our equation (16) and write it in an alternate form of Div(J) = f where
J = 5u− βu. The inner product of this with our test function v is then

−
∫

Ω
Div(J) · v dΩ =

∫
Ω
J · 5v dΩ +

∫
∂Ω

(J · n) · v dγ

We seek u that is zero on the boundary and such that∫
Ω

(5u− βu) · 5v dΩ =

∫
Ω
fv dΩ.

As in the 1-Dimensional case, we find u as a combination of piecewise linear functions. We split
Ω into triangles and approximate u by a function that is continuous and linear over each triangle.
We use the analog of the 1-D hat function in 2D with functions that are 1 at a vertex of the
triangulation and zero at every other vertex, as shown below where

φi(xi, yi) = 1, φi(xj , yj) = 0, ifj 6= i, u =

n∑
j=1

ujφj(x, y),

so that the discrete variational problem then amounts to finding uj such that

n∑
j=1

aijuj = bi,

where

aij =

∫
Ω
5φi(5φj − βφj) dΩ

=

∫
Ω
5φj · 5φi dΩ−

∫
Ω

(β · 5φi)φj dΩ(20)

Instead of taking the integral over the whole domain Ω, we divide it into triangles and then add

up those integrals. Over one triangle, 5φi =
a

|a|2
, where a is the altitude vector at vertex i. The

first term on the right side of this integral is then∫
Ω
5φj · 5φi dΩ =

∫
T1

a1

|a1|2
· a2

|a2|2
dxdy,

which, after some simplification, amounts to∫
Ω
5φj · 5φi dΩ = −1

2
(cotαij1 + cotαij2).

For the second term on the right hand side of (20), we again divide the domain into triangles∫
T1

φi(β · 5φj) dxdy +

∫
T1

(β · 5φj) dxdy.



12 DANA TOBIN, BRADLEY THOMPSON, AND LUDMIL ZIKATANOV

If β is constant, we have∫
Ω

(β · 5φi)φj dΩ = (βT1 ·
aT1
|a|2

)

∫
T1

φj dxdy + (βT2 ·
aT2
|a|2

)

∫
T2

φj dxdy

=
1

3

[
|T1|(βT1 ·

aT1
|aT1 |2

) + |T2|(βT2 ·
aT2
|aT2 |2

)

]
.

References

1. J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equations. Math. Comp.,
68(228):1429–1446, 1999.

2. RD Lazarov and LT Zikatanov. An exponential fitting scheme for general convection-diffusion equations on tetra-
hedral meshes. Comput. Appl. Math.(Obchysljuval’na ta prykladna matematyka, Kiev), 1(92):60–69, 2005. Also
available as arXiv preprint 1211.0869, November, 2012.

3. L Chen. iFEM: An Integrated Finite Element Methods Package in MATLAB. Technical Report, University of
California at Irvine, 2009.

4. D. Scharfetter and H. Gummel. Large-signal analysis of a silicon read diod oscilator. IEEE Trans. Electron Devices,
ED-16(205):959–962, 1969.

Department of Mathematics, The Pennsylvania State University, University Park, PA, 16802


	1. Introduction
	1.1. EAFE scheme in 1D

	2. EAFE in 2 Dimensions
	2.1. Mesh Structure
	2.2. Basic Mesh Structure
	2.3. Auxiliary Mesh Structure
	2.4. Weak formulation in 2D
	2.5. Derivation of the EAFE scheme
	2.6. Matrix Formulation

	3. Numerical examples
	4. Our additions to iFEM
	Appendix A. Standard methods
	A.1. Finite difference methods in 1D
	A.2. Variational Formulation and Finite Element Method in 1D
	A.3. Standard Finite Element Method in 2D

	References

